metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[N'-(5-Bromo-2-oxidobenzylidene- κ O)-3hydroxy-2-naphthohydrazidato- $\kappa^2 N', O$]dibutyltin(IV)

See Mun Lee, Kong Mun Lo, Hapipah Mohd Ali and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 24 June 2009; accepted 25 June 2009

Key indicators: single-crystal X-ray study; T = 140 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.025; wR factor = 0.060; data-to-parameter ratio = 16.8.

The Sn^{IV} atom in the title compound, $[Sn(C_4H_9)_2-(C_{18}H_{11}BrN_2O_3)]$, shows a distorted *cis*-C₂NO₂Sn trigonalbipyramidal coordination. One of the butyl chains is disordered over two sites in a 0.60 (1):0.40 (1) ratio.

Related literature

The dianions of similar N'-(2-hydroxybenzylidene)benzohydrazones O,N,O'-chelate to tin in organotin compounds; see: Labib *et al.* (1996); Samanta *et al.* (2007).

Experimental

Crystal data

 $\begin{bmatrix} Sn(C_4H_9)_2(C_{18}H_{11}BrN_2O_3) \end{bmatrix} \\ M_r = 616.11 \\ Triclinic, P\overline{1} \\ a = 10.1626 (2) \text{ Å} \\ b = 12.2534 (2) \text{ Å} \\ c = 12.2534 (2) \text{ Å} \\ \alpha = 62.309 (1)^{\circ} \\ \beta = 83.809 (1)^{\circ} \end{bmatrix}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.515, T_{\rm max} = 0.621$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.060$ S = 1.015740 reflections 342 parameters 47 restraints $\gamma = 65.802 (1)^{\circ}$ $V = 1256.44 (4) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 2.64 \text{ mm}^{-1}$ T = 140 K $0.29 \times 0.26 \times 0.20 \text{ mm}$

12053 measured reflections 5740 independent reflections 4886 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.53~\text{e}~\text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.59~\text{e}~\text{\AA}^{-3} \end{split}$$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the University of Malaya (PS320/2008C, RG020/ 09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2544).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Labib, L., Khalil, T. E., Iskander, M. F. & Refaat, L. S. (1996). *Polyhedron*, **21**, 3697–3707.

Samanta, B., Chakraborty, J., Dey, D. K. & Mitra, S. (2007). Struct. Chem. 18, 287–297.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, m862 [doi:10.1107/S1600536809024477]

$[N'-(5-Bromo-2-oxidobenzylidene-\kappa O)-3-hydroxy-2-naphthohydrazidato-\kappa^2 N', O]$ dibutyltin(IV)

S. M. Lee, K. M. Lo, H. M. Ali and S. W. Ng

Experimental

The Schiff base (0.39 g, 1 mmol) prepared from the condensation of 5-bromosalicylaldehyde and 3-hydroxy-2-naphthoic hydrazide was heated with dibutyltin oxide (0.25 g, 1 mmol) in ethanol (100 ml) until the oxide dissolved completely. Slow cooling of the filtrate gave the product as yellow crystals.

Refinement

One of the two butyl chains is disordered over two positions in all four carbon atoms. The C–C distances were restrained to 1.54 ± 0.01 Å; the anisotropic temperature factors of the carbon atoms were restrained to be nearly isotropic. The disorder refined to a 60 (1):40 (1) ratio.

Hydrogen atoms were placed at calculated positions (C–H 0.95–0.98 Å) and were treated as riding on their parent atoms, with $U_{iso}(H)$ set to 1.2–1.5 $U_{eq}(C)$. The hydroxy H-atom was refined with a distance restraint of 0.84±0.01 Å.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $Sn(C_4H_9)_2(C_{18}H_{11}BrN_2O_3)$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in one of the two butyl chains is not shown.

$[N'-(5-Bromo-2-oxidobenzylidene-\kappa O)-3-hydroxy-2- naphthohydrazidato-\kappa^2 N', O] dibutyltin(IV)$

Crystal data	
[Sn(C ₄ H ₉) ₂ (C ₁₈ H ₁₁ BrN ₂ O ₃)]	Z = 2
$M_r = 616.11$	$F_{000} = 616$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.629 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.1626 (2) Å	Cell parameters from 5075 reflections
b = 12.2534 (2) Å	$\theta = 2.5 - 29.6^{\circ}$
c = 12.5583 (2) Å	$\mu = 2.64 \text{ mm}^{-1}$
$\alpha = 62.309 \ (1)^{\circ}$	T = 140 K
$\beta = 83.809 \ (1)^{\circ}$	Block, yellow
$\gamma = 65.802 \ (1)^{\circ}$	$0.29 \times 0.26 \times 0.20 \text{ mm}$
$V = 1256.44 (4) \text{ Å}^3$	

Data collection

Bruker SMART APEX diffractometer	5740 independent reflections
Radiation source: fine-focus sealed tube	4886 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 140 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 13$
$T_{\min} = 0.515, T_{\max} = 0.621$	$k = -15 \rightarrow 15$
12053 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.060$	$w = 1/[\sigma^2(F_o^2) + (0.0287P)^2 + 0.3063P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
5740 reflections	$\Delta \rho_{max} = 0.53 \text{ e } \text{\AA}^{-3}$
342 parameters	$\Delta \rho_{\rm min} = -0.59 \ {\rm e} \ {\rm \AA}^{-3}$
47 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Sn1	0.828380 (16)	0.685444 (15)	0.242560 (14)	0.02643 (5)	
Br1	0.66105 (3)	1.14077 (3)	0.54233 (3)	0.04563 (8)	
N1	0.62849 (19)	0.86055 (18)	0.22108 (16)	0.0253 (4)	
N2	0.51208 (19)	0.88674 (18)	0.15093 (16)	0.0269 (4)	
01	0.91148 (17)	0.75767 (16)	0.32829 (17)	0.0373 (4)	
02	0.67073 (17)	0.70268 (15)	0.12755 (14)	0.0312 (4)	
O3	0.24653 (18)	1.01189 (17)	0.04941 (17)	0.0377 (4)	
Н3	0.316 (2)	0.997 (3)	0.091 (2)	0.043 (8)*	
C1	0.9977 (13)	0.6790 (7)	0.1322 (11)	0.033 (2)	0.604 (8)
H1A	0.9610	0.7589	0.0518	0.040*	0.604 (8)
H1B	1.0748	0.6859	0.1674	0.040*	0.604 (8)
C2	1.0651 (6)	0.5515 (4)	0.1148 (4)	0.0393 (14)	0.604 (8)
H2A	0.9899	0.5474	0.0747	0.047*	0.604 (8)
H2B	1.1428	0.5585	0.0605	0.047*	0.604 (8)
C3	1.1279 (6)	0.4224 (5)	0.2312 (5)	0.0407 (14)	0.604 (8)

H3A	1.0489	0.4069	0.2811	0.049*	0.604 (8)
H3B	1.1940	0.4299	0.2774	0.049*	0.604 (8)
C4	1.2132 (13)	0.3006 (7)	0.2037 (10)	0.053 (3)	0.604 (8)
H4A	1.2446	0.2161	0.2796	0.079*	0.604 (8)
H4B	1.2983	0.3108	0.1628	0.079*	0.604 (8)
H4C	1.1501	0.2987	0.1513	0.079*	0.604 (8)
C1'	0.9820 (16)	0.6826 (9)	0.1057 (16)	0.027 (3)	0.396 (8)
H1C	0.9347	0.6928	0.0347	0.032*	0.396 (8)
H1D	1.0088	0.7599	0.0786	0.032*	0.396 (8)
C2'	1.1199 (7)	0.5504 (6)	0.1557 (8)	0.037 (2)	0.396 (8)
H2C	1.1921	0.5585	0.0961	0.044*	0.396 (8)
H2D	1.1619	0.5366	0.2307	0.044*	0.396 (8)
C3'	1.0915 (9)	0.4283 (7)	0.1826 (10)	0.047 (2)	0.396 (8)
НЗС	1.0529	0.4391	0.1076	0.056*	0.396 (8)
H3D	1.0187	0.4194	0.2416	0.056*	0.396 (8)
C4'	1.2367 (15)	0.2992 (9)	0.2356 (14)	0.045 (3)	0.396 (8)
H4D	1.2299	0.2276	0.2245	0.068*	0.396 (8)
H4E	1.2546	0.2687	0.3221	0.068*	0.396 (8)
H4F	1.3167	0.3204	0.1936	0.068*	0.396 (8)
C5	0.8159 (2)	0.5186 (2)	0.4004 (2)	0.0270 (5)	
H5A	0.7944	0.4611	0.3760	0.032*	
H5B	0.9116	0.4638	0.4490	0.032*	
C6	0.7010 (2)	0.5593 (2)	0.4793 (2)	0.0284 (5)	
H6A	0.7220	0.6169	0.5039	0.034*	
H6B	0.6049	0.6132	0.4315	0.034*	
C7	0.6958 (3)	0.4372 (2)	0.5921 (2)	0.0334 (5)	
H7A	0.6758	0.3792	0.5673	0.040*	
H7B	0.7918	0.3837	0.6400	0.040*	
C8	0.5807 (3)	0.4764 (3)	0.6711 (2)	0.0438 (6)	
H8A	0.5856	0.3950	0.7443	0.066*	
H8B	0.4845	0.5231	0.6263	0.066*	
H8C	0.5978	0.5365	0.6935	0.066*	
С9	0.8505 (2)	0.8415 (2)	0.3749 (2)	0.0300 (5)	
C10	0.9369 (3)	0.8446 (2)	0.4528 (2)	0.0366 (6)	
H10	1.0369	0.7856	0.4712	0.044*	
C11	0.8800 (3)	0.9309 (2)	0.5027 (2)	0.0352 (6)	
H11	0.9402	0.9297	0.5565	0.042*	
C12	0.7347 (3)	1.0201 (2)	0.4748 (2)	0.0323 (5)	
C13	0.6465 (2)	1.0216 (2)	0.3985 (2)	0.0298 (5)	
H13	0.5475	1.0835	0.3794	0.036*	
C14	0.7019 (2)	0.9314 (2)	0.3481 (2)	0.0268 (5)	
C15	0.6026 (2)	0.9392 (2)	0.2698 (2)	0.0265 (5)	
H15	0.5080	1.0093	0.2516	0.032*	
C16	0.5445 (2)	0.8009 (2)	0.10719 (19)	0.0265 (5)	
C17	0.4293 (2)	0.8171 (2)	0.03210 (19)	0.0267 (5)	
C18	0.4605 (2)	0.7287 (2)	-0.01503 (19)	0.0265 (5)	
H18	0.5566	0.6618	-0.0006	0.032*	
C19	0.3555 (3)	0.7338 (2)	-0.08373 (19)	0.0290 (5)	
C20	0.3883 (3)	0.6414 (2)	-0.1309 (2)	0.0339 (5)	
-		- ()	(=)		

H20	0.4847	0.5757	-0.1188	0.041*
C21	0.2825 (3)	0.6461 (3)	-0.1935 (2)	0.0408 (6)
H21	0.3047	0.5829	-0.2234	0.049*
C22	0.1397 (3)	0.7457 (3)	-0.2134 (2)	0.0397 (6)
H22	0.0665	0.7484	-0.2568	0.048*
C23	0.1049 (3)	0.8378 (3)	-0.1720 (2)	0.0348 (5)
H23	0.0086	0.9047	-0.1879	0.042*
C24	0.2118 (2)	0.8345 (2)	-0.1049 (2)	0.0292 (5)
C25	0.1806 (2)	0.9263 (2)	-0.0580 (2)	0.0304 (5)
H25	0.0851	0.9945	-0.0731	0.036*
C26	0.2844 (2)	0.9195 (2)	0.0086 (2)	0.0290 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01985 (8)	0.01819 (8)	0.03093 (9)	-0.00410 (6)	0.00688 (6)	-0.00751 (6)
Br1	0.04928 (17)	0.05103 (18)	0.05338 (18)	-0.02710 (14)	0.01566 (14)	-0.03359 (15)
N1	0.0219 (9)	0.0205 (9)	0.0239 (9)	-0.0055 (7)	0.0040 (7)	-0.0059 (7)
N2	0.0236 (9)	0.0225 (9)	0.0251 (9)	-0.0051 (8)	0.0031 (8)	-0.0076 (8)
01	0.0220 (8)	0.0282 (9)	0.0573 (11)	-0.0044 (7)	0.0013 (8)	-0.0209 (8)
02	0.0257 (8)	0.0239 (8)	0.0356 (9)	-0.0017 (7)	0.0028 (7)	-0.0144 (7)
03	0.0257 (9)	0.0317 (9)	0.0517 (11)	-0.0017 (7)	-0.0001 (8)	-0.0241 (9)
C1	0.026 (3)	0.035 (3)	0.017 (5)	-0.003 (2)	0.003 (2)	-0.005 (2)
C2	0.035 (3)	0.042 (3)	0.028 (2)	-0.008 (2)	0.009 (2)	-0.015 (2)
C3	0.033 (3)	0.034 (3)	0.043 (3)	-0.009 (2)	0.007 (2)	-0.013 (2)
C4	0.044 (4)	0.036 (3)	0.062 (6)	-0.007 (3)	0.017 (3)	-0.020 (3)
C1'	0.026 (5)	0.021 (4)	0.019 (7)	-0.007 (3)	0.010 (4)	-0.002 (3)
C2'	0.022 (3)	0.036 (4)	0.041 (4)	-0.008 (3)	0.008 (3)	-0.014 (3)
C3'	0.044 (5)	0.036 (4)	0.057 (6)	-0.016 (3)	0.016 (4)	-0.022 (4)
C4'	0.043 (6)	0.031 (4)	0.050 (6)	-0.011 (4)	0.023 (5)	-0.016 (4)
C5	0.0246 (11)	0.0182 (10)	0.0282 (11)	-0.0058 (9)	0.0018 (9)	-0.0055 (9)
C6	0.0291 (12)	0.0237 (11)	0.0279 (12)	-0.0096 (9)	0.0047 (9)	-0.0098 (9)
C7	0.0362 (13)	0.0282 (12)	0.0276 (12)	-0.0137 (11)	0.0043 (10)	-0.0065 (10)
C8	0.0462 (16)	0.0477 (16)	0.0332 (14)	-0.0236 (13)	0.0140 (12)	-0.0138 (12)
C9	0.0262 (11)	0.0193 (11)	0.0358 (13)	-0.0098 (9)	0.0044 (10)	-0.0058 (9)
C10	0.0287 (12)	0.0214 (12)	0.0467 (15)	-0.0096 (10)	-0.0042 (11)	-0.0048 (11)
C11	0.0391 (14)	0.0257 (12)	0.0362 (13)	-0.0196 (11)	-0.0023 (11)	-0.0040 (10)
C12	0.0376 (13)	0.0255 (12)	0.0331 (13)	-0.0176 (10)	0.0083 (10)	-0.0101 (10)
C13	0.0289 (12)	0.0236 (11)	0.0304 (12)	-0.0112 (10)	0.0088 (10)	-0.0085 (10)
C14	0.0257 (11)	0.0199 (11)	0.0253 (11)	-0.0087 (9)	0.0052 (9)	-0.0041 (9)
C15	0.0208 (10)	0.0189 (11)	0.0286 (11)	-0.0047 (9)	0.0054 (9)	-0.0058 (9)
C16	0.0252 (11)	0.0211 (11)	0.0235 (11)	-0.0081 (9)	0.0075 (9)	-0.0051 (9)
C17	0.0272 (11)	0.0206 (11)	0.0224 (11)	-0.0081 (9)	0.0070 (9)	-0.0048 (9)
C18	0.0249 (11)	0.0217 (11)	0.0214 (11)	-0.0056 (9)	0.0054 (9)	-0.0050 (9)
C19	0.0331 (12)	0.0248 (11)	0.0183 (10)	-0.0100 (10)	0.0064 (9)	-0.0039 (9)
C20	0.0360 (13)	0.0290 (13)	0.0267 (12)	-0.0074 (10)	0.0035 (10)	-0.0103 (10)
C21	0.0510 (16)	0.0361 (14)	0.0293 (13)	-0.0142 (12)	0.0016 (12)	-0.0130 (11)
C22	0.0425 (15)	0.0428 (15)	0.0271 (13)	-0.0187 (12)	0.0000 (11)	-0.0092 (11)

C23	0.0318 (13)	0.0340 (13)	0.0252 (12)	-0.0129 (11)	0.0025 (10)	-0.0038 (10)
C24	0.0297 (12)	0.0242 (11)	0.0217 (11)	-0.0108 (10)	0.0058 (9)	-0.0022 (9)
C25	0.0241 (11)	0.0237 (11)	0.0302 (12)	-0.0069 (9)	0.0066 (9)	-0.0058 (9)
C26	0.0290 (12)	0.0220 (11)	0.0281 (12)	-0.0087 (9)	0.0094 (10)	-0.0084 (9)
Geometric pa	arameters (Å, °)					
Sn1—O1		2.0857 (17)	С5—	H5B	0.99) 00
Sn1—C1		2.089 (15)	С6—	C7	1.52	25 (3)
Sn1—C5		2.126 (2)	С6—	H6A	0.99) 00
Sn1—O2		2.1531 (16)	С6—	H6B	0.99	900
Sn1—C1'		2.20 (2)	С7—	C8	1.52	22 (3)
Sn1—N1		2.1932 (18)	С7—	H7A	0.99	900
Br1-C12		1.895 (2)	С7—	H7B	0.99) 00
N1-C15		1.296 (3)	C8—	H8A	0.98	300
N1—N2		1.389 (2)	C8—	H8B	0.98	300
N2-C16		1.316 (3)	C8—	H8C	0.98	300
O1—C9		1.319 (3)	С9—	C10	1.40)5 (3)
O2—C16		1.295 (3)	С9—	C14	1.41	7 (3)
O3—C26		1.353 (3)	C10–	C11	1.37	73 (4)
O3—H3		0.830 (10)	C10–	-H10	0.95	500
C1—C2		1.538 (7)	C11–	C12	1.38	39 (3)
C1—H1A		0.9900	C11–	-H11	0.95	500
C1—H1B		0.9900	C12-	C13	1.36	59 (3)
C2—C3		1.507 (6)	C13–	C14	1.41	5 (3)
C2—H2A		0.9900	C13-	-H13	0.95	500
C2—H2B		0.9900	C14-	C15	1.42	29 (3)
C3—C4		1.566 (7)	C15-	-H15	0.95	500
С3—НЗА		0.9900	C16–	C17	1.47	74 (3)
С3—Н3В		0.9900	C17–	C18	1.37	77 (3)
C4—H4A		0.9800	C17–	C26	1.43	37 (3)
C4—H4B		0.9800	C18–	C19	1.40)8 (3)
C4—H4C		0.9800	C18–	-H18	0.95	500
C1'—C2'		1.538 (9)	C19–	C20	1.41	9 (3)
C1'—H1C		0.9900	C19–	C24	1.42	24 (3)
C1'—H1D		0.9900	C20–	-C21	1.36	57 (3)
C2'—C3'		1.516 (8)	C20–	-H20	0.95	500
C2'—H2C		0.9900	C21-	C22	1.41	4 (4)
C2'—H2D		0.9900	C21-	-H21	0.95	500
C3'—C4'		1.563 (9)	C22–	C23	1.35	59 (4)
С3'—Н3С		0.9900	C22–	-H22	0.95	500
C3'—H3D		0.9900	C23–	C24	1.42	22 (3)
C4'—H4D		0.9800	C23–	-H23	0.95	500
C4'—H4E		0.9800	C24–	C25	1.41	2 (3)
C4'—H4F		0.9800	C25–	C26	1.36	59 (3)
C5—C6		1.525 (3)	C25–	-H25	0.95	500
C5—H5A		0.9900				
O1—Sn1—C	1	90.6 (3)	С7—	С6—Н6А	109	.2
O1—Sn1—C	5	97.48 (8)	С5—	С6—Н6А	109	.2
		× /				

C1—Sn1—C5	126.0 (2)	С7—С6—Н6В	109.2
O1—Sn1—O2	153.97 (6)	С5—С6—Н6В	109.2
C1—Sn1—O2	98.7 (3)	H6A—C6—H6B	107.9
C5—Sn1—O2	96.49 (8)	C8—C7—C6	112.7 (2)
O1—Sn1—C1'	98.9 (4)	С8—С7—Н7А	109.0
C1—Sn1—C1'	9.2 (6)	С6—С7—Н7А	109.0
C5—Sn1—C1'	128.1 (2)	С8—С7—Н7В	109.0
O2—Sn1—C1'	89.5 (4)	С6—С7—Н7В	109.0
O1—Sn1—N1	82.45 (6)	H7A—C7—H7B	107.8
C1—Sn1—N1	128.2 (2)	С7—С8—Н8А	109.5
C5—Sn1—N1	105.82 (7)	С7—С8—Н8В	109.5
O2—Sn1—N1	72.64 (6)	H8A—C8—H8B	109.5
C1'—Sn1—N1	124.9 (2)	С7—С8—Н8С	109.5
C15—N1—N2	115.59 (18)	H8A—C8—H8C	109.5
C15—N1—Sn1	128.43 (15)	H8B—C8—H8C	109.5
N2—N1—Sn1	115.90 (13)	O1—C9—C10	118.8 (2)
C16—N2—N1	112.44 (17)	O1—C9—C14	123.1 (2)
C9—O1—Sn1	133.15 (15)	C10-C9-C14	118.1 (2)
C16—O2—Sn1	115.23 (14)	C11—C10—C9	121.5 (2)
С26—О3—Н3	110 (2)	С11—С10—Н10	119.3
C2	114.9 (8)	С9—С10—Н10	119.3
C2—C1—H1A	108.5	C10-C11-C12	120.1 (2)
Sn1—C1—H1A	108.5	C10-C11-H11	119.9
C2—C1—H1B	108.5	C12—C11—H11	119.9
Sn1—C1—H1B	108.5	C13—C12—C11	120.5 (2)
H1A—C1—H1B	107.5	C13—C12—Br1	120.52 (18)
C3—C2—C1	113.6 (6)	C11—C12—Br1	118.98 (18)
C3—C2—H2A	108.8	C12—C13—C14	120.4 (2)
C1—C2—H2A	108.8	C12—C13—H13	119.8
C3—C2—H2B	108.8	C14—C13—H13	119.8
C1—C2—H2B	108.8	C13—C14—C9	119.4 (2)
H2A—C2—H2B	107.7	C13—C14—C15	116.9 (2)
C2—C3—C4	110.1 (6)	C9—C14—C15	123.7 (2)
С2—С3—НЗА	109.6	N1—C15—C14	126.7 (2)
С4—С3—НЗА	109.6	N1—C15—H15	116.7
С2—С3—Н3В	109.6	C14—C15—H15	116.7
С4—С3—Н3В	109.6	O2—C16—N2	123.8 (2)
НЗА—СЗ—НЗВ	108.2	O2—C16—C17	118.5 (2)
C2'—C1'—Sn1	111.5 (10)	N2-C16-C17	117.68 (19)
C2'—C1'—H1C	109.3	C18—C17—C26	118.6 (2)
Sn1—C1'—H1C	109.3	C18—C17—C16	118.82 (19)
C2'—C1'—H1D	109.3	C26—C17—C16	122.6 (2)
Sn1—C1'—H1D	109.3	C17—C18—C19	122.5 (2)
H1C—C1'—H1D	108.0	C17—C18—H18	118.7
C3'—C2'—C1'	112.8 (8)	C19—C18—H18	118.7
C3'—C2'—H2C	109.0	C18—C19—C20	122.1 (2)
C1'—C2'—H2C	109.0	C18—C19—C24	118.3 (2)
C3'—C2'—H2D	109.0	C20—C19—C24	119.6 (2)
C1'—C2'—H2D	109.0	C21—C20—C19	120.5 (2)

H2C—C2'—H2D	107.8	C21—C20—H20	119.7
C2'—C3'—C4'	109.0 (7)	С19—С20—Н20	119.7
C2'—C3'—H3C	109.9	C20—C21—C22	119.6 (2)
C4'—C3'—H3C	109.9	C20-C21-H21	120.2
C2'—C3'—H3D	109.9	C22—C21—H21	120.2
C4'—C3'—H3D	109.9	C23—C22—C21	121.5 (2)
H3C—C3'—H3D	108.3	С23—С22—Н22	119.3
C3'—C4'—H4D	109.5	C21—C22—H22	119.3
C3'—C4'—H4E	109.5	C22—C23—C24	120.4 (2)
H4D—C4'—H4E	109.5	С22—С23—Н23	119.8
C3'—C4'—H4F	109.5	C24—C23—H23	119.8
H4D—C4'—H4F	109.5	C25—C24—C23	122.6 (2)
H4E—C4'—H4F	109.5	C25—C24—C19	119.1 (2)
C6—C5—Sn1	113.65 (14)	C23—C24—C19	118.3 (2)
С6—С5—Н5А	108.8	C26—C25—C24	121.6 (2)
Sn1—C5—H5A	108.8	С26—С25—Н25	119.2
С6—С5—Н5В	108.8	С24—С25—Н25	119.2
Sn1—C5—H5B	108.8	O3—C26—C25	118.2 (2)
H5A—C5—H5B	107.7	O3—C26—C17	121.9 (2)
C7—C6—C5	112.22 (19)	C25—C26—C17	119.9 (2)
O1—Sn1—N1—C15	-9.94 (19)	C9—C10—C11—C12	-1.4 (4)
C1—Sn1—N1—C15	-94.8 (4)	C10-C11-C12-C13	0.8 (4)
C5—Sn1—N1—C15	85.7 (2)	C10-C11-C12-Br1	-178.50 (18)
O2—Sn1—N1—C15	177.7 (2)	C11-C12-C13-C14	0.6 (3)
C1'—Sn1—N1—C15	-105.6 (5)	Br1-C12-C13-C14	179.89 (16)
O1—Sn1—N1—N2	173.53 (15)	C12—C13—C14—C9	-1.4 (3)
C1—Sn1—N1—N2	88.7 (4)	C12-C13-C14-C15	179.8 (2)
C5—Sn1—N1—N2	-90.79 (15)	O1-C9-C14-C13	-177.6 (2)
O2—Sn1—N1—N2	1.18 (13)	C10-C9-C14-C13	0.8 (3)
C1'—Sn1—N1—N2	77.9 (5)	O1—C9—C14—C15	1.1 (4)
C15—N1—N2—C16	-178.12 (19)	C10-C9-C14-C15	179.5 (2)
Sn1—N1—N2—C16	-1.1 (2)	N2-N1-C15-C14	178.17 (19)
C1—Sn1—O1—C9	146.5 (3)	Sn1-N1-C15-C14	1.6 (3)
C5—Sn1—O1—C9	-87.0 (2)	C13-C14-C15-N1	-175.1 (2)
O2—Sn1—O1—C9	34.9 (3)	C9-C14-C15-N1	6.1 (4)
C1'—Sn1—O1—C9	142.4 (3)	Sn1—O2—C16—N2	0.9 (3)
N1—Sn1—O1—C9	18.1 (2)	Sn1—O2—C16—C17	-178.28 (14)
O1—Sn1—O2—C16	-18.6 (2)	N1—N2—C16—O2	0.2 (3)
C1—Sn1—O2—C16	-128.4 (3)	N1—N2—C16—C17	179.36 (17)
C5—Sn1—O2—C16	103.52 (16)	O2-C16-C17-C18	-0.9 (3)
C1'—Sn1—O2—C16	-128.1 (3)	N2-C16-C17-C18	179.84 (19)
N1—Sn1—O2—C16	-1.07 (14)	O2-C16-C17-C26	177.4 (2)
O1—Sn1—C1—C2	137.0 (6)	N2-C16-C17-C26	-1.8 (3)
C5—Sn1—C1—C2	37.3 (8)	C26—C17—C18—C19	-0.9 (3)
O2—Sn1—C1—C2	-67.4 (7)	C16—C17—C18—C19	177.48 (19)
C1'—Sn1—C1—C2	-69 (3)	C17—C18—C19—C20	-179.3 (2)
N1—Sn1—C1—C2	-142.1 (5)	C17—C18—C19—C24	0.1 (3)
Sn1—C1—C2—C3	-59.5 (10)	C18—C19—C20—C21	177.6 (2)
C1—C2—C3—C4	-171.9 (8)	C24—C19—C20—C21	-1.8 (3)

O1—Sn1—C1'—C2'	85.7 (8)	C19—C20—C21—C22	1.3 (4)
C1—Sn1—C1'—C2'	59 (2)	C20-C21-C22-C23	0.2 (4)
C5—Sn1—C1'—C2'	-21.2 (11)	C21—C22—C23—C24	-1.2 (4)
O2—Sn1—C1'—C2'	-119.1 (8)	C22—C23—C24—C25	-178.8 (2)
N1—Sn1—C1'—C2'	172.7 (6)	C22—C23—C24—C19	0.6 (3)
Sn1—C1'—C2'—C3'	67.2 (12)	C18—C19—C24—C25	0.9 (3)
C1'—C2'—C3'—C4'	-178.6 (11)	C20-C19-C24-C25	-179.7 (2)
O1—Sn1—C5—C6	68.73 (16)	C18—C19—C24—C23	-178.6 (2)
C1—Sn1—C5—C6	165.0 (4)	C20-C19-C24-C23	0.8 (3)
O2—Sn1—C5—C6	-89.24 (16)	C23—C24—C25—C26	178.5 (2)
C1'—Sn1—C5—C6	176.3 (5)	C19—C24—C25—C26	-1.0 (3)
N1—Sn1—C5—C6	-15.50 (18)	C24—C25—C26—O3	179.3 (2)
Sn1—C5—C6—C7	-179.63 (15)	C24—C25—C26—C17	0.1 (3)
C5—C6—C7—C8	-179.5 (2)	C18—C17—C26—O3	-178.3 (2)
Sn1—O1—C9—C10	164.47 (17)	C16—C17—C26—O3	3.3 (3)
Sn1—O1—C9—C14	-17.1 (3)	C18—C17—C26—C25	0.8 (3)
O1-C9-C10-C11	179.1 (2)	C16—C17—C26—C25	-177.5 (2)
C14—C9—C10—C11	0.6 (4)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O3—H3…N2	0.83 (1)	1.88 (2)	2.606 (2)	146 (3)

